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CONVEXITY, SMOOTHNESS AND
MARTINGALE INEQUALITIES

BY
D. J. H. GARLING

ABSTRACT

Necessary and sufficient conditions are given, in terms of the behaviour of
martingales, for a Banach space to be given on equivalent norm under which it
is 8-uniformly convex or p-uniformly smooth, where § and p are suitable Orlicz
functions.

1. Introduction

Among many other interesting results, Pisier [3], [4] has shown that, if
2 = q <x, a Banach space X can be given an equivalently g-uniformly convex
norm if and only if there exists a constant C such that

E(|xo]*)+ ZIE(” Xn = Xu||) = C* SBPE(” X 1)

for all X-valued martingales (and that it is sufficient for the condition to hold for
Walsh-Paley martingales); a similar characterization is given of Banach spaces
which can be given an equivalent p-uniformly smooth norm (where 1 < p =2).
In this paper we shall extend these results, first by considering §-uniform
convexity and p-uniform smoothness, where & and p are suitable Orlicz
functions, and secondly by obtaining conditions in terms of uniformly bounded
martingales (for uniform convexity) and L'-convergence (for uniform
smoothness).

We gather together some rather elementary remarks about martingales in
section 3.

The main theorems are established in sections 4 and 5. The results concerning
uniform convexity are obtained directly; we prove results concerning uniform
smoothness by duality.

Received February 11, 1977 and in revised form April 13, 1977

189



190 D. J. H. GARLING Israel J. Math.

I am grateful to the Department of Mathematics, The Ohio State University,
for their hospitality; much of this work was done while I was a visitor there.

2. Terminology and notation

We use the customary terminology (as employed by Lindberg [2], for
example) for Orlicz functions and Orlicz spaces. If f and g are continuous
non-decreasing functions on [0, 2], with f(0) = g(0) = 0, we say that f < g if there
exists 0 < A =1 such that Af(Ax) = g(x) for all x in [0,2], and say that f: g if
f < g and g < f.

We recall that if (X,|| [) is a Banach space, the modulus of convexity 8x is
defined by

sw(e) =int{1- L2k paye = 1=y 1= o]

for 0=¢=2. X is uniformly convex if 6x(g)>0 for £¢>0. If 8 is an
Orlicz M -function on [0,2] we say that X is §-uniformly convex if there exists
k >0 such that

i +y)|+kdkfx -y =1

whenever |x[|[=1 and ||y | 1. Thus X is §-uniformly convex if and only if
5,(;5. If X is §-uniformly convex, where 8(¢)=e¢e” we say that X is
p-uniformly convex.

We recall also that the modulus of smoothness px is defined by

ety belemvlypag= gy p=-)

ey L2

X is uniformly smooth if px(1) = o(7) at 0. If p is an Orlicz M-function on [0, =),
we say that X is p-uniformly smooth if there exists K >0 such that

lx+yl+lx-yl=2+Kp(K|yl)

whenever || x || = 1. Thus X is p-uniformly smooth if and only if px <p X X is
p-uniformly smooth, where p(7)= 7%, we say that X is p-uniformly smooth.
We shall require the following two fundamental properties of the modulus of
convexity (cf. {1, corol. 11, prop. 19 and the remarks on p.138]):
(i) For each Banach space X there exists a function 8§ on [0,2] such that
5 ~ 8x and 8(¢'”) is convex;
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(il) f 1<p =2, Soxy ~ x;
further the constants of equivalence do not depend upon X.

As far as martingales are concerned, we shall suppose that F,C F.C F,C---
is an increasing sequence of sub-o-fields of a probability space (), F, P), with
Fy = (Q,J), and with F the o-field generated by the sub-o-fields F,. If X is a
Banach space, we shall say that x = (x,) is an X-valued martingale.if each x, is
an F,-measurable X-valued Bochner integrable function and if [,x,dP =
Jax...dP foreach A in F, and each n; we shall not suppose that x, = 0. We set
do=xy, and d, = x, — x._, for n = 1.

If the sequence (F.) is generated by a sequence (¢, ), -, of symmetric Bernoulli
random variables, we shall say that x is a Walsh-Paley martingale. In this case,
we shall write A for ), and consider A = lim A, as a projective limit of finite fields
in the usual way.

3. Some spaces of martingales

In this section, we shall suppose that X is a Banach space whose dual X * has
the Radon-Nikodym property, and that 8 is an Orlicz M -function, satisfying the
A,-condition, with conjugate Orlicz function p.

Let M(X) denote the space of all X-valued martingales (on (£}, F, (F.), P)). If
x € M(X), let D(x)=(d,). D can be considered as a linear map from M into
the measurable functions on @, where @ is the disjoint union of the spaces
(Q,F,P)(N=0,1,2,---) (or, when () = A, the disjoint union of the fields A,).

Let

M:;(X)={x: D(x)€ Ls;(P, X)}

={x:ZE§(|d. ) <.

We give M, (X) the norm induced by the mapping D and the norm on L; (P, X).

Now suppose that ¢ is a continuous linear functional on M;(X). By the
Hahn-Banach theorem, there exists an element i € (Ls(P, X))* = L, (P, X*)
such that

o(x)=y¢(D(x)) forxin M;(X)

and || ¢ ||=| ¢ |l ¥ is not unique, nor does it necessarily belong to D (M, (X*)).
At the cost of losing norm equality, we can rectify this. We need an elementary
lemma.

LemMA 1. Suppose that (Q, F, P) is a probability space and F, a sub-o-field of
F. Let H={f € L;(X): E(f| Fo))=0}. Then if g, and g, are in L,(X*),
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E(g:(h))=E(g:(h)) forallhinH

if and only if
g8~ E(g:| Fo) = g2~ E(g:| Fo).
Proor. Suppose that E(g.(h))= E(gfh)) for all h in H. If f€ L;(X),
f—E(f|Fy)€ H, so that
E(g:(f ~ E(f| Fo))) = E(gAf — E(f| F0)))-
But

E(g(E(f| Fo)) = E(E(g | Fo)(f))

for i = 1,2, so that

E((8: = E(g:| F))(f)) = E((8:— E (8| Fo))(f))-
Conversely if h € H,

E(g(h))= E((g ~ E(g | Fo))(h))

for i = 1,2, so that if g, ~ E(g,| Fo) = g.— E(g.| ), E(g:(h)) = E(gx(h)) for all
h in H.
Consequently there exists a unique x* € M, (X *) such that

¢ (x)=D(x")(D(x))

= di(dy) + 2 E(d*(d)).

Since d§ = o and d* = ¢, — E(¢s | Fi-)) for i = 1, it follows that [|¢ | = x*|, =
2]l ¢ ||. Conversely each element of M,(X*) determines an element of M,(X)* in
this way. Thus we have

THEOREM 1. There is a natural isomorphism between M, (X*) and Ms(X)*. If
x* = (x7%) corresponds to the functional ¢, ¢ |=]|x*]. =2 ¢].

We shall also be concerned with the space M™(X) of X-valued closed
uniformly bounded martingales. If x = (x,) € M*(X) let us denote the closure of
x. by x.. The map x — x.. is of course a linear isomorphism of M~(X) onto the
space L3(X) of essentially uniformly bounded Bochner measurable functions.
We give M™(X) the norm || x || = || x. -, so that M=(X) is a Banach space. Note
that if x € M“(X), E(| x.|)) = sup. E(|| x. |})-
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4. Uniform convexity and martingale inequalities

We now turn to martingale inequalities. The first result is a conditional version
of [4, prop. 2.1]. If x = (x,) is a martingale with increments (d.) and if p = 1, let
us set

m, (do) = || do]
m,(d.) = (E(|d. ] ‘ann))”" for n = 1.
Note that if x is a Walsh-Paley martingale m,(d,)=|d.|.

THEOREM 2. IfC >0 and 1 < p =2 there exists a constant k¢, >0 such that
ke 3, E (B (kegmy () = supl 3, |

for any X-valued martingale (x,) with sup, [ x. [.= C.

Proor. By the remarks in Section 2, there exist / >0 and a function j such
that
(i) g(e)=j(e"") is convex,
(i) j(e)= 8x(le), for all 0 <e =2, and
(iii) S.rxfe) 2 lj(le), for all 0<e =2.
Note that (| x.[) is a submartingale, so that if A € F, and [a| x,..|[FdP =
AP >0, [allxu AP = fa]l xn + 3dusr[F P = AP. Thus

A j I, P dP = 27" toxa

=i ” (xn + %dn+l)XA ”p
= ” %(AilanA + /\ﬂx"-HXA ”p
S 1= (N duvixa llp)-

In other words,

[ Wxwerlbap =[x, lrdp = A%lglima ] deors )
A

e

i)

Now fix € >0 and let



194 D. J. H. GARLING Israel J. Math.

Ac={w:(k —1)e = g[I"C*m:(d,..)(@)] < ke }.
Then if P(A.)>0,

I fami(ddP]
el = ke

so that, adding over k, we obtain that
ol =l ff = 1C7 2 (k = DeP(A).

On the other hand,
f g[I"C"m?(d,.)]dP = keP(As),
Al

so that
I [lp =l xa [} 2 ICP(E(g[I7C " mE(dnr)]) — €).

Since ¢ is arbitrary we get that

[0 llp =l xa flf = PCPE(Bx(IPC ™' my(do1))).

Further, since 6x < g%,

lxolls =l doll; = kdx (km, (dy)),

for some suitable k. Adding, we obtain the required result.
We now turn to the problem of renorming a Banach space with an equivalent
d-uniformly convex norm.

THEOREM 3. Suppose that (X,|| |) is a Banach space and that & is an Orlicz
M-function which satisfies the A,-condition. Then the following are equivalent.
(i) There is an equivalent norm on X under which X is §-uniformly convex.

(if) Foreach 1 <p =2 and each C >0 there exists a constant K >0 such that

3 E(3(my ()= K suplx [

for any X-valued martingale (x,) with sup, [|x. |l. = C.
(11i) Forsome 1 <p =2 and some C >0 there exists a constant K >0 such that
p

S EG(4 )= Ksupl i

for any X-valued Walsh—Paley martingale (x,) with sup, || x. .= C.
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(iv) If (x.) is any closed X -valued Walsh-Paley martingale with sup|| x, |l. <
%, then S0 E(8(| d:|])) <.

Proor. Since & satisfies the A,-condition, (i) implies (ii), by Theorem 2. Since
m,(d.) =1/ d; || for a Walsh-Paley martingale, (ii) implies (iii), and, using the
A,-condition again, it is easy to see that (iii) implies (iv).

Let us now suppose that (iv) holds, and construct an equivalent norm on X
under which X is &-uniformly convex. The construction is modelled on that used
by Pisier [4].

Condition (iv) says that, restricting attention to the probability space A,
M~(X) = M;(X). Since the inclusion has a closed graph, it is continuous. Thus
there exists @ >0 such that if |x [.=6, [D(x)[s = 1; ie. ZLES(|d: )= 1.
Using the A-condition it follows that there exists K >0 such that if [x .= 1,
then £7,E(8(|d D)= K. Now if 0<ea = x|.=1,

S sftone )= 5140 < x

so that 27, E(3(|d =K | x |-
Now if x € X and || x || =1, define

y() = inf 2K + DE(x-) = (K + 1) 3, E8(1 )

where the infimum is taken over all Walsh-Paley martingales x in M~(X) with
Ix)l.=1 and xo= x.
If we take x, = x for all n it follows that

(a) y(x)= 2K+ D x |
If | x | = 1/2(K + 1), E(|x.]) = 1/2(K + 1) while =7, E(5(| d. [)) = K, so that
y(x)Z 2K/2(K + 1)+ 2E(| x.|) - K/(K + 1)
so that
(b) y()z2x|| for Jx|z1/2(K+1).

Now suppose that y(x)<1and y(y)=<1.Let z = 3(x + y) and let n >0. Then
there exist Walsh—Paley martingales x and y in M*(X) with |x [.=1, [y [.=1,
Xo= X, yo=y such that, setting p. = ¥u = Yn-1,

y()+m 2 2K+ DE(x )= (K +1)" 3, E(3(1da ),
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y(y)+ 1 22K + DE(y-I) = K + 1" 3 E@(lpn )

We now consider the martingale obtained by setting z, = z,

_ X—y\_ 1+£1> (1—3.)
Z, Z+81< 2 ) ( 2 X + 2 y

and

1+81

Zn(gh €2y " ) = (fz_)xn—l(eb €3, )+ <1 _281>Yn—1(€2, €3, " )

for n = 2. Note that

Z,.(l, €2, €3, ) = xn~1(82’ €3, )’

and
Zo( =1, €2 €5 )= Yuoi(£2y €377+ )
so that
21, €2, 83,7 - )= xu(€2, €3, )
and

Z"(_ 1’ €2, €3, )= )’w(€2, €3, " ')'

Consequently E(||z.[) =XE(|x-|)+ E(|y-|)) and, setting f. = z, = z,,,

S G = 50 - yI2)+ 3, EGAS 1)

= 8(1x -y 112+ 3 EG(d: 1) +1 Y, EG(Up. ).
Thus
y(@) =y (x)+y(Y)+n - (K+1D)78(x ~y/2).

Since n is arbitrary we have

© () =+ 7o) - K+ 1)75(x - yl2)

In particular, B = {x: y(x) = 1} is an absolutely convex subset of {x: || x || = 1}.
It follows from (a) that B D{x:|x|=1/2(K + 1)} and from (b) that B C
{x:| x| =1/2}. Thus the gauge of B,| |[s say, is a norm on X equivalent to the
original norm.
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Now suppose that IXIB=IYIB=1' ie. V(X)“v(y)=1 By (a), llxll>

lz]=1/2.

Since & satisfies the A,-condition, there exists 8 >0 such that §((1-A)t)=
(1- 6A)5(t) for all £, and 0 < A = 1/2. Let ¢ ' = (2(K + 1)* + 8K)(1 + K), and let
a = e8(]| x — y ||I/2). Since §(1/2) = K /2 (this follows easily from the basic prop-
erty of K), a =1/2.

Now let wo=w=(1+a)z and let w,=wo+(1-a)z,—2z))=2az+
(1-a)z, fornz 1 |wl=(+a)|z]|=1, so that y(w) is defined. Further

Iw-l-=2alz [+ (1 -a)fz].=1.

Also E(w-[D=2alz |+ (1-a)E(|z-[)=(1+a)E(|z-[) and, setting g.=
w, = W = (1-a)f,,

E@3(| 8. 1)z (1= 8a)EG(| f.1)-

Combining these, we see that

yW)=1+9—(K+1)7'8(lx~y/2)

+2a(K+1)E(||Zx||)+K+1 25(5(|If 1),

6aK
K+1°

<l+n—(K+1)'8(x—y[/2)+2a(K+1)+

Since 7 is arbitrary, it follows from the definition of « that y(w)=1. Thus

zla=(1+a) ' =1-38(1x ~y [12).
Since|| | isequivalentto| |s, thisshowsthat (X,| |s)is&-uniformly convex.

5. Uniform smoothness and martingale inequalities

We now use duality to obtain the result for smoothness corresponding to
Theorem 3.

THEOREM 4. Suppose that (X,| |) is @ Banach space and that p is an Orlicz
M-function which satisfies the A-condition. Then the following are equivalent :
(i) There is an equivalent norm on X under which X is p-uniformly smooth.
(i) If (x.) is any X-valued Walsh-Paley martingale with =7_, Ep(|d, ||) < e,
then sup, E (|| x. [[) < .
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(iii) If (x.) is any X -valued Walsh-Paley martingale with =7_, Ep(|| d. ||) < «,
then x, converges in L'(X), and almost surely.

Proor. Suppose that (i) holds, and that (x,) is an X-valued Walsh-Paley
martingale with 27, Ep(]l d; ) <. Since X* is §-uniformly convex (where § is
the Orlicz function conjugate to p), as in Theorem 3 there exists K 2 1 such that

2Es(|d% )= K sup] x 7.

for all uniformly bounded X*-valued Walsh-Paley martingales (x}) with
sup, [ x5 -=1. As

sup E(|x, [) = sup{sup E (x3(x.)): (x ) € MAX"): Il =1}

we have that

sup E(lx.D=K sup[ sup E(x*(x.)): 2 E8(ldh=1 }

= Ksup[supi Ed*(d): D Es(|d¥|)= 1}

n j=0

= K[[D(x*)[s <.

Thus (i) implies (ii). A standard argument shows that (ii) implies (iii).

Finally suppose that (iii) holds. If x € M*(X) (with respect to A,(A.)), let
T(x)=Ilimx, T maps M,(X) into L'(X), and, again by the closed graph
theorem, T is continuous. The transposed mapping maps (L '(X))* into Ms(X*),
and therefore maps L3(X*)into Ms(X*). If f € Ly(X*), (T*(f). = E(f l A.),s0
that M~(X*)C M,(X™*). Consequently X* can be renormed to be §-uniformly
convex, by Theorem 3, and so (i) holds.
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