

CONVEXITY, SMOOTHNESS AND MARTINGALE INEQUALITIES

BY
D. J. H. GARLING

ABSTRACT

Necessary and sufficient conditions are given, in terms of the behaviour of martingales, for a Banach space to be given an equivalent norm under which it is δ -uniformly convex or ρ -uniformly smooth, where δ and ρ are suitable Orlicz functions.

1. Introduction

Among many other interesting results, Pisier [3], [4] has shown that, if $2 \leq q < \infty$, a Banach space X can be given an equivalently q -uniformly convex norm if and only if there exists a constant C such that

$$E(\|x_0\|^q) + \sum_{n=1}^{\infty} E(\|x_n - x_{n-1}\|^q) \leq C^q \sup_n E(\|x_n\|^q)$$

for all X -valued martingales (and that it is sufficient for the condition to hold for Walsh-Paley martingales); a similar characterization is given of Banach spaces which can be given an equivalent p -uniformly smooth norm (where $1 < p \leq 2$). In this paper we shall extend these results, first by considering δ -uniform convexity and ρ -uniform smoothness, where δ and ρ are suitable Orlicz functions, and secondly by obtaining conditions in terms of uniformly bounded martingales (for uniform convexity) and L^1 -convergence (for uniform smoothness).

We gather together some rather elementary remarks about martingales in section 3.

The main theorems are established in sections 4 and 5. The results concerning uniform convexity are obtained directly; we prove results concerning uniform smoothness by duality.

Received February 11, 1977 and in revised form April 13, 1977

I am grateful to the Department of Mathematics, The Ohio State University, for their hospitality; much of this work was done while I was a visitor there.

2. Terminology and notation

We use the customary terminology (as employed by Lindberg [2], for example) for Orlicz functions and Orlicz spaces. If f and g are continuous non-decreasing functions on $[0, 2]$, with $f(0) = g(0) = 0$, we say that $f \overset{\circ}{<} g$ if there exists $0 < \lambda \leq 1$ such that $\lambda f(\lambda x) \leq g(x)$ for all x in $[0, 2]$, and say that $f \overset{\circ}{\sim} g$ if $f \overset{\circ}{<} g$ and $g \overset{\circ}{<} f$.

We recall that if $(X, \| \cdot \|)$ is a Banach space, the *modulus of convexity* δ_X is defined by

$$\delta_X(\varepsilon) = \inf \left\{ 1 - \frac{\|x + y\|}{2} : \|x\| = \|y\| = 1, \|x - y\| = \varepsilon \right\}$$

for $0 \leq \varepsilon \leq 2$. X is *uniformly convex* if $\delta_X(\varepsilon) > 0$ for $\varepsilon > 0$. If δ is an Orlicz M -function on $[0, 2]$ we say that X is δ -uniformly convex if there exists $k > 0$ such that

$$\| \frac{1}{2}(x + y) \| + k\delta(k\|x - y\|) \leq 1$$

whenever $\|x\| \leq 1$ and $\|y\| \leq 1$. Thus X is δ -uniformly convex if and only if $\delta_X \overset{\circ}{>} \delta$. If X is δ -uniformly convex, where $\delta(\varepsilon) = \varepsilon^p$, we say that X is p -uniformly convex.

We recall also that the *modulus of smoothness* ρ_X is defined by

$$\rho_X(\tau) = \sup \left\{ \frac{\|x + y\| + \|x - y\|}{2} - 1 : \|x\| = 1, \|y\| \leq \tau \right\}.$$

X is *uniformly smooth* if $\rho_X(\tau) = o(\tau)$ at 0. If ρ is an Orlicz M -function on $[0, \infty)$, we say that X is ρ -uniformly smooth if there exists $K > 0$ such that

$$\|x + y\| + \|x - y\| \leq 2 + K\rho(K\|y\|)$$

whenever $\|x\| = 1$. Thus X is ρ -uniformly smooth if and only if $\rho_X \overset{\circ}{<} \rho$. If X is ρ -uniformly smooth, where $\rho(\tau) = \tau^p$, we say that X is p -uniformly smooth.

We shall require the following two fundamental properties of the modulus of convexity (cf. [1, corol. 11, prop. 19 and the remarks on p.138]):

(i) For each Banach space X there exists a function δ on $[0, 2]$ such that $\delta \overset{\circ}{\sim} \delta_X$ and $\delta(\varepsilon^{1/2})$ is convex;

(ii) If $1 < p \leq 2$, $\delta_{L^p(X)} \stackrel{\circ}{\sim} \delta_X$;
 further the constants of equivalence do not depend upon X .

As far as martingales are concerned, we shall suppose that $F_0 \subseteq F_1 \subseteq F_2 \subseteq \dots$ is an increasing sequence of sub- σ -fields of a probability space (Ω, F, P) , with $F_0 = (\Omega, \emptyset)$, and with F the σ -field generated by the sub- σ -fields F_n . If X is a Banach space, we shall say that $\mathbf{x} = (x_n)$ is an X -valued martingale if each x_n is an F_n -measurable X -valued Bochner integrable function and if $\int_A x_n dP = \int_A x_{n+1} dP$ for each A in F_n and each n ; we shall *not* suppose that $x_0 = 0$. We set $d_0 = x_0$, and $d_n = x_n - x_{n-1}$ for $n \geq 1$.

If the sequence (F_n) is generated by a sequence $(\varepsilon_n)_{n=1}^\infty$ of symmetric Bernoulli random variables, we shall say that \mathbf{x} is a Walsh–Paley martingale. In this case, we shall write Δ for Ω , and consider $\Delta = \lim \Delta_n$ as a projective limit of finite fields in the usual way.

3. Some spaces of martingales

In this section, we shall suppose that X is a Banach space whose dual X^* has the Radon–Nikodym property, and that δ is an Orlicz M -function, satisfying the Δ_2 -condition, with conjugate Orlicz function ρ .

Let $M(X)$ denote the space of all X -valued martingales (on $(\Omega, F, (F_n), P)$). If $\mathbf{x} \in M(X)$, let $D(\mathbf{x}) = (d_n)$. D can be considered as a linear map from M into the measurable functions on Φ , where Φ is the disjoint union of the spaces (Ω, F_n, P) ($N = 0, 1, 2, \dots$) (or, when $\Omega = \Delta$, the disjoint union of the fields Δ_n).

Let

$$\begin{aligned} M_\delta(X) &= \{\mathbf{x}: D(\mathbf{x}) \in L_\delta(\Phi, X)\} \\ &= \{\mathbf{x}: \Sigma E\delta(\|d_n\|) < \infty\}. \end{aligned}$$

We give $M_\delta(X)$ the norm induced by the mapping D and the norm on $L_\delta(\Phi, X)$.

Now suppose that φ is a continuous linear functional on $M_\delta(X)$. By the Hahn–Banach theorem, there exists an element $\psi \in (L_\delta(\Phi, X))^* = L_\rho(\Phi, X^*)$ such that

$$\varphi(\mathbf{x}) = \psi(D(\mathbf{x})) \quad \text{for } \mathbf{x} \text{ in } M_\delta(X)$$

and $\|\varphi\| = \|\psi\|$. ψ is not unique, nor does it necessarily belong to $D(M_\rho(X^*))$. At the cost of losing norm equality, we can rectify this. We need an elementary lemma.

LEMMA 1. *Suppose that (Ω, F, P) is a probability space and F_0 a sub- σ -field of F . Let $H = \{f \in L_\delta(X): E(f | F_0) = 0\}$. Then if g_1 and g_2 are in $L_\rho(X^*)$,*

$$E(g_1(h)) = E(g_2(h)) \quad \text{for all } h \text{ in } H$$

if and only if

$$g_1 - E(g_1 | F_0) = g_2 - E(g_2 | F_0).$$

PROOF. Suppose that $E(g_1(h)) = E(g_2(h))$ for all h in H . If $f \in L_\delta(X)$, $f - E(f | F_0) \in H$, so that

$$E(g_1(f - E(f | F_0))) = E(g_2(f - E(f | F_0))).$$

But

$$E(g_i(E(f | F_0))) = E(E(g_i | F_0)(f))$$

for $i = 1, 2$, so that

$$E((g_1 - E(g_1 | F_0))(f)) = E((g_2 - E(g_2 | F_0))(f)).$$

Conversely if $h \in H$,

$$E(g_i(h)) = E((g_i - E(g_i | F_0))(h))$$

for $i = 1, 2$, so that if $g_1 - E(g_1 | F_0) = g_2 - E(g_2 | F_0)$, $E(g_1(h)) = E(g_2(h))$ for all h in H .

Consequently there exists a unique $x^* \in M_\rho(X^*)$ such that

$$\begin{aligned} \varphi(x) &= D(x^*)(D(x)) \\ &= d_0^*(d_0) + \sum_{i=1}^{\infty} E(d_i^*(d_i)). \end{aligned}$$

Since $d_0^* = \psi_0$ and $d_i^* = \psi_i - E(\psi_i | F_{i-1})$ for $i \geq 1$, it follows that $\|\varphi\| \leq \|x^*\|_\rho \leq 2\|\varphi\|$. Conversely each element of $M_\rho(X^*)$ determines an element of $M_\delta(X)^*$ in this way. Thus we have

THEOREM 1. *There is a natural isomorphism between $M_\rho(X^*)$ and $M_\delta(X)^*$. If $x^* = (x_n^*)$ corresponds to the functional φ , $\|\varphi\| \leq \|x^*\|_\rho \leq 2\|\varphi\|$.*

We shall also be concerned with the space $M^*(X)$ of X -valued closed uniformly bounded martingales. If $x = (x_n) \in M^*(X)$ let us denote the closure of x_n by x_∞ . The map $x \rightarrow x_\infty$ is of course a linear isomorphism of $M^*(X)$ onto the space $L_b^*(X)$ of essentially uniformly bounded Bochner measurable functions. We give $M^*(X)$ the norm $\|x\|_\infty = \|x_\infty\|_\infty$, so that $M^*(X)$ is a Banach space. Note that if $x \in M^*(X)$, $E(\|x_\infty\|) = \sup_n E(\|x_n\|)$.

4. Uniform convexity and martingale inequalities

We now turn to martingale inequalities. The first result is a conditional version of [4, prop. 2.1]. If $\mathbf{x} = (x_n)$ is a martingale with increments (d_n) and if $p \geq 1$, let us set

$$m_p(d_0) = \|d_0\|,$$

$$m_p(d_n) = (E(\|d_n\|^p | F_{n-1}))^{1/p} \quad \text{for } n \geq 1.$$

Note that if \mathbf{x} is a Walsh-Paley martingale $m_p(d_n) = \|d_n\|$.

THEOREM 2. *If $C > 0$ and $1 < p \leq 2$ there exists a constant $k_{C,p} > 0$ such that*

$$k_{C,p} \sum_{i=0}^{\infty} E(\delta_X(k_{C,p} m_p(d_i))) \leq \sup_n \|x_n\|_p^p$$

for any X -valued martingale (x_n) with $\sup_n \|x_n\|_{\infty} \leq C$.

PROOF. By the remarks in Section 2, there exist $l > 0$ and a function j such that

- (i) $g(\varepsilon) = j(\varepsilon^{1/p})$ is convex,
- (ii) $j(\varepsilon) \geq l\delta_X(l\varepsilon)$, for all $0 < \varepsilon \leq 2$, and
- (iii) $\delta_{L^p(X)}(\varepsilon) \geq lj(l\varepsilon)$, for all $0 < \varepsilon \leq 2$.

Note that $(\|x_n\|^p)$ is a submartingale, so that if $A \in F_n$ and $\int_A \|x_{n+1}\|^p dP = \lambda^p > 0$, $\int_A \|x_n\|^p dP \leq \int_A \|x_n + \frac{1}{2}d_{n+1}\|^p dP \leq \lambda^p$. Thus

$$\begin{aligned} \lambda^{-p} \int_A \|x_n\|^p dP &\leq \lambda^{-1} \|x_n \chi_A\|_p \\ &\leq \lambda^{-1} \|(x_n + \frac{1}{2}d_{n+1}) \chi_A\|_p \\ &= \|\frac{1}{2}(\lambda^{-1}x_n \chi_A + \lambda^{-1}d_{n+1} \chi_A)\|_p \\ &\leq 1 - lj(l\lambda^{-1} \|d_{n+1} \chi_A\|_p). \end{aligned}$$

In other words,

$$\begin{aligned} \int_A \|x_{n+1}\|^p dP - \int_A \|x_n\|^p dP &\geq \lambda^p l g\left[l^p \lambda^{-p} \|d_{n+1} \chi_A\|_p^p\right] \\ &= l C^p P(A) \left(\frac{\lambda^p}{C^p P(A)}\right) g\left[l^p \left(\frac{C^p P(A)}{\lambda^p}\right) \frac{\int_A m_p(d_{n+1}) dP}{C^p P(A)}\right] \\ &\geq l C^p P(A) g\left[\frac{l^p \int_A m_p(d_{n+1}) dP}{C^p P(A)}\right]. \end{aligned}$$

Now fix $\varepsilon > 0$ and let

$$A_k = \{\omega : (k-1)\varepsilon \leq g[l^p C^{-p} m_p^p(d_{n+1}))(\omega)] < k\varepsilon\}.$$

Then if $P(A_k) > 0$,

$$g\left[\frac{l^p}{C^p} \frac{\int_{A_k} m_p^p(d_{n+1}) dP}{P(A_k)}\right] \geq (k-1)\varepsilon,$$

so that, adding over k , we obtain that

$$\|x_{n+1}\|_p^p - \|x_n\|_p^p \geq lC^p \sum_{k=1}^{\infty} (k-1)\varepsilon P(A_k).$$

On the other hand,

$$\int_{A_k} g[l^p C^{-p} m_p^p(d_{n+1})] dP \leq k\varepsilon P(A_k),$$

so that

$$\|x_{n+1}\|_p^p - \|x_n\|_p^p \geq lC^p (E(g[l^p C^{-p} m_p^p(d_{n+1})]) - \varepsilon).$$

Since ε is arbitrary we get that

$$\|x_{n+1}\|_p^p - \|x_n\|_p^p \geq l^2 C^p E(\delta_X(l^2 C^{-1} m_p(d_{n+1}))).$$

Further, since $\delta_X < \varepsilon^p$,

$$\|x_0\|_p^p = \|d_0\|_p^p \geq k \delta_X(k m_p(d_0)),$$

for some suitable k . Adding, we obtain the required result.

We now turn to the problem of renorming a Banach space with an equivalent δ -uniformly convex norm.

THEOREM 3. *Suppose that $(X, \|\cdot\|)$ is a Banach space and that δ is an Orlicz M -function which satisfies the Δ_2 -condition. Then the following are equivalent.*

- (i) *There is an equivalent norm on X under which X is δ -uniformly convex.*
- (ii) *For each $1 < p \leq 2$ and each $C > 0$ there exists a constant $K > 0$ such that*

$$\sum_{i=0}^{\infty} E(\delta(m_p(d_i))) \leq K \sup_n \|x_n\|_p^p,$$

for any X -valued martingale (x_n) with $\sup_n \|x_n\|_{\infty} \leq C$.

- (iii) *For some $1 < p \leq 2$ and some $C > 0$ there exists a constant $K > 0$ such that*

$$\sum_{i=0}^{\infty} E(\delta(\|d_i\|)) \leq K \sup_n \|x_n\|_p^p,$$

for any X -valued Walsh-Paley martingale (x_n) with $\sup_n \|x_n\|_{\infty} \leq C$.

(iv) If (x_n) is any closed X -valued Walsh–Paley martingale with $\sup \|x_n\|_\infty < \infty$, then $\sum_{i=0}^{\infty} E(\delta(\|d_i\|)) < \infty$.

PROOF. Since δ satisfies the Δ_2 -condition, (i) implies (ii), by Theorem 2. Since $m_p(d_i) = \|d_i\|$ for a Walsh–Paley martingale, (ii) implies (iii), and, using the Δ_2 -condition again, it is easy to see that (iii) implies (iv).

Let us now suppose that (iv) holds, and construct an equivalent norm on X under which X is δ -uniformly convex. The construction is modelled on that used by Pisier [4].

Condition (iv) says that, restricting attention to the probability space Δ , $M^*(X) \subseteq M_\delta(X)$. Since the inclusion has a closed graph, it is continuous. Thus there exists $\theta > 0$ such that if $\|x\|_\infty \leq \theta$, $\|D(x)\|_\delta \leq 1$; i.e. $\sum_{i=0}^{\infty} E(\delta(\|d_i\|)) \leq 1$. Using the Δ_2 -condition it follows that there exists $K > 0$ such that if $\|x\|_\infty \leq 1$, then $\sum_{i=0}^{\infty} E(\delta(\|d_i\|)) \leq K$. Now if $0 < \alpha = \|x\|_\infty \leq 1$,

$$\sum_{i=0}^{\infty} E\left(\frac{1}{\alpha} \delta(\|d_i\|)\right) \leq \sum_{i=0}^{\infty} E\left(\delta\left(\frac{\|d_i\|}{\alpha}\right)\right) \leq K,$$

so that $\sum_{i=0}^{\infty} E(\delta(\|d_i\|)) \leq K \|x\|_\infty$.

Now if $x \in X$ and $\|x\| = 1$, define

$$\gamma(x) = \inf [2(K+1)E(\|x_\infty\|) - (K+1)^{-1} \sum_{n=1}^{\infty} E\delta(\|d_n\|)]$$

where the infimum is taken over all Walsh–Paley martingales x in $M^*(X)$ with $\|x\|_\infty \leq 1$ and $x_0 = x$.

If we take $x_n = x$ for all n it follows that

$$(a) \quad \gamma(x) \leq 2(K+1)\|x\|.$$

If $\|x\| \geq 1/2(K+1)$, $E(\|x_\infty\|) \geq 1/2(K+1)$ while $\sum_{n=1}^{\infty} E(\delta(\|d_n\|)) \leq K$, so that

$$\gamma(x) \geq 2K/2(K+1) + 2E(\|x_\infty\|) - K/(K+1)$$

so that

$$(b) \quad \gamma(x) \geq 2\|x\| \quad \text{for} \quad \|x\| \geq 1/2(K+1).$$

Now suppose that $\gamma(x) \leq 1$ and $\gamma(y) \leq 1$. Let $z = \frac{1}{2}(x + y)$ and let $\eta > 0$. Then there exist Walsh–Paley martingales x and y in $M^*(X)$ with $\|x\|_\infty \leq 1$, $\|y\|_\infty \leq 1$, $x_0 = x$, $y_0 = y$ such that, setting $\rho_n = y_n - y_{n-1}$,

$$\gamma(x) + \eta \geq 2(K+1)E(\|x_\infty\|) - (K+1)^{-1} \sum_{n=1}^{\infty} E(\delta(\|d_n\|)),$$

$$\gamma(y) + \eta \geq 2(K+1)E(\|y_\infty\|) - (K+1)^{-1} \sum_{n=1}^{\infty} E(\delta(\|\rho_n\|)).$$

We now consider the martingale obtained by setting $z_0 = z$,

$$z_1 = z + \varepsilon_1 \left(\frac{x-y}{2} \right) = \left(\frac{1+\varepsilon_1}{2} \right) x + \left(\frac{1-\varepsilon_1}{2} \right) y$$

and

$$z_n(\varepsilon_1, \varepsilon_2, \dots) = \left(\frac{1+\varepsilon_1}{2} \right) x_{n-1}(\varepsilon_2, \varepsilon_3, \dots) + \left(\frac{1-\varepsilon_1}{2} \right) y_{n-1}(\varepsilon_2, \varepsilon_3, \dots)$$

for $n \geq 2$. Note that

$$z_n(1, \varepsilon_2, \varepsilon_3, \dots) = x_{n-1}(\varepsilon_2, \varepsilon_3, \dots),$$

and

$$z_n(-1, \varepsilon_2, \varepsilon_3, \dots) = y_{n-1}(\varepsilon_2, \varepsilon_3, \dots)$$

so that

$$z_\infty(1, \varepsilon_2, \varepsilon_3, \dots) = x_\infty(\varepsilon_2, \varepsilon_3, \dots)$$

and

$$z_\infty(-1, \varepsilon_2, \varepsilon_3, \dots) = y_\infty(\varepsilon_2, \varepsilon_3, \dots).$$

Consequently $E(\|z_\infty\|) = \frac{1}{2}(E(\|x_\infty\|) + E(\|y_\infty\|))$ and, setting $f_n = z_n - z_{n-1}$,

$$\begin{aligned} \sum_{n=1}^{\infty} E(\delta(\|f_n\|)) &= \delta(\|x - y\|/2) + \sum_{n=2}^{\infty} E(\delta(\|f_n\|)) \\ &= \delta(\|x - y\|/2) + \frac{1}{2} \sum_{n=1}^{\infty} E(\delta(\|d_n\|)) + \frac{1}{2} \sum_{n=1}^{\infty} E(\delta(\|\rho_n\|)). \end{aligned}$$

Thus

$$\gamma(z) \leq \frac{1}{2}(\gamma(x) + \gamma(y)) + \eta - (K+1)^{-1}\delta(\|x - y\|/2).$$

Since η is arbitrary we have

$$(c) \quad \gamma\left(\frac{x+y}{2}\right) \leq \frac{1}{2}(\gamma(x) + \gamma(y)) - (K+1)^{-1}\delta(\|x - y\|/2).$$

In particular, $B = \{x : \gamma(x) \leq 1\}$ is an absolutely convex subset of $\{x : \|x\| \leq 1\}$. It follows from (a) that $B \supseteq \{x : \|x\| \leq 1/2(K+1)\}$ and from (b) that $B \subseteq \{x : \|x\| \leq 1/2\}$. Thus the gauge of B , $|\cdot|_B$ say, is a norm on X equivalent to the original norm.

Now suppose that $|x|_B = |y|_B = 1$; i.e. $\gamma(x) = \gamma(y) = 1$. By (a), $\|x\| \geq 1/2(K+1)$ and $\|y\| \geq 1/2(K+1)$, and so by (b), $\|x\| \leq 1/2$ and $\|y\| \leq 1/2$; thus $\|z\| \leq 1/2$.

Since δ satisfies the Δ_2 -condition, there exists $\theta > 0$ such that $\delta((1-\lambda)t) \geq (1-\theta\lambda)\delta(t)$ for all t , and $0 < \lambda \leq 1/2$. Let $\varepsilon^{-1} = (2(K+1)^2 + \theta K)(1+K)$, and let $\alpha = \varepsilon\delta(\|x-y\|/2)$. Since $\delta(1/2) \leq K/2$ (this follows easily from the basic property of K), $\alpha \leq 1/2$.

Now let $w_0 = w = (1+\alpha)z$ and let $w_n = w_0 + (1-\alpha)(z_n - z_0) = 2\alpha z + (1-\alpha)z_n$ for $n \geq 1$. $\|w\| = (1+\alpha)\|z\| \leq 1$, so that $\gamma(w)$ is defined. Further

$$\|w_n\|_\infty \leq 2\alpha\|z\| + (1-\alpha)\|z_n\|_\infty \leq 1.$$

Also $E(\|w_n\|) \leq 2\alpha\|z\| + (1-\alpha)E(\|z_n\|) \leq (1+\alpha)E(\|z_n\|)$ and, setting $g_n = w_n - w_{n-1} = (1-\alpha)f_n$,

$$E(\delta(\|g_n\|)) \geq (1-\theta\alpha)E(\delta(\|f_n\|)).$$

Combining these, we see that

$$\begin{aligned} \gamma(w) &\leq 1 + \eta - (K+1)^{-1}\delta(\|x-y\|/2) \\ &\quad + 2\alpha(K+1)E(\|z_n\|) + \frac{\theta\alpha}{K+1} \sum_{n=1}^{\infty} E(\delta(\|f_n\|)), \\ &\leq 1 + \eta - (K+1)^{-1}\delta(\|x-y\|/2) + 2\alpha(K+1) + \frac{\theta\alpha K}{K+1}. \end{aligned}$$

Since η is arbitrary, it follows from the definition of α that $\gamma(w) \leq 1$. Thus

$$|z|_B \leq (1+\alpha)^{-1} \leq 1 - \frac{\varepsilon}{2}\delta(\|x-y\|/2).$$

Since $\|\cdot\|$ is equivalent to $|\cdot|_B$, this shows that $(X, \|\cdot\|)$ is δ -uniformly convex.

5. Uniform smoothness and martingale inequalities

We now use duality to obtain the result for smoothness corresponding to Theorem 3.

THEOREM 4. *Suppose that $(X, \|\cdot\|)$ is a Banach space and that ρ is an Orlicz M -function which satisfies the Δ_2 -condition. Then the following are equivalent:*

- (i) *There is an equivalent norm on X under which X is ρ -uniformly smooth.*
- (ii) *If (x_n) is any X -valued Walsh-Paley martingale with $\sum_{i=0}^{\infty} E\rho(\|d_i\|) < \infty$, then $\sup_n E(\|x_n\|) < \infty$.*

(iii) If (x_n) is any X -valued Walsh–Paley martingale with $\sum_{i=0}^{\infty} E\rho(\|d_i\|) < \infty$, then x_n converges in $L^1(X)$, and almost surely.

PROOF. Suppose that (i) holds, and that (x_n) is an X -valued Walsh–Paley martingale with $\sum_{i=0}^{\infty} E\rho(\|d_i\|) < \infty$. Since X^* is δ -uniformly convex (where δ is the Orlicz function conjugate to ρ), as in Theorem 3 there exists $K \geq 1$ such that

$$\sum E\delta(\|d_n^*\|) \leq K \sup_n \|x_n^*\|_{\infty}$$

for all uniformly bounded X^* -valued Walsh–Paley martingales (x_n^*) with $\sup_n \|x_n^*\|_{\infty} \leq 1$. As

$$\sup_n E(\|x_n\|) = \sup\{\sup_n E(x_n^*(x_n)): (x_n^*) \in M_{\infty}(X^*): \|(x_n^*)\| \leq 1\}$$

we have that

$$\begin{aligned} \sup_n E(\|x_n\|) &\leq K \sup\left\{\sup_n E(x_n^*(x_n)): \sum E\delta(\|d_n^*\|) \leq 1\right\} \\ &= K \sup\left\{\sup_n \sum_{j=0}^{\infty} E d_j^*(d_j): \sum E\delta(\|d_n^*\|) \leq 1\right\} \\ &= K \|D(x^*)\|_{\delta} < \infty. \end{aligned}$$

Thus (i) implies (ii). A standard argument shows that (ii) implies (iii).

Finally suppose that (iii) holds. If $x \in M^{\rho}(X)$ (with respect to $\Delta, (\Delta_n)$), let $T(x) = \lim x_n$. T maps $M_{\rho}(X)$ into $L^1(X)$, and, again by the closed graph theorem, T is continuous. The transposed mapping maps $(L^1(X))^*$ into $M_{\delta}(X^*)$, and therefore maps $L_b^{\infty}(X^*)$ into $M_{\delta}(X^*)$. If $f \in L_b^{\infty}(X^*)$, $(T^*(f))_n = E(f \mid \Delta_n)$, so that $M^{\infty}(X^*) \subseteq M_{\delta}(X^*)$. Consequently X^* can be renormed to be δ -uniformly convex, by Theorem 3, and so (i) holds.

REFERENCES

1. T. Figiel, *On the moduli of convexity and smoothness*, Studia Math. **56** (1976), 121–155.
2. K. Lindberg, *On subspaces of Orlicz sequence spaces*, Studia Math. **45** (1973), 119–146.
3. G. Pisier, *Martingales à valeurs dans les espaces uniformément convexes*, C. R. Acad. Sci. Paris Ser. A **279** (1974), 647–649.
4. G. Pisier, *Martingales with values in uniformly convex spaces*, Israel J. Math. **20** (1975), 326–350.