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CONVEXITY, SMOOTHNESS AND 
MARTINGALE INEQUALITIES 

BY 

D. J. H. GARLING 

ABSTRACT 

Necessary and sufficient conditions are given, in terms of the behaviour of 
martingales, for a Banach space to be given on equivalent norm under which it 
is B-uniformly convex or p-uniformly smooth, where 6 and p are suitable Orlicz 
functions. 

1. Introduction 

Among many other interesting results, Pisier [3], [4] has shown that, if 

2 =< q < oo, a Banach space X can be given an equivalently q-uniformly convex 

norm if and only if there exists a constant C such that 

E (11 Xo II q) + ~ E(ll x. - x._, II q) ~ C q sup E ([[ x. [[q) 
n = l  rt 

for all X-valued martingales (and that it is sufficient for the condition to hold for 

Walsh-Paley martingales); a similar characterization is given of Banach spaces 

which can be given an equivalent p-uniformly smooth norm (where 1 < p =< 2). 

In this paper we shall extend these results, first by considering 6-uniform 

convexity and p-uniform smoothness, where 6 and p are suitable Orlicz 

functions, and secondly by obtaining conditions in terms of uniformly bounded 

martingales (for uniform convexity) and L~-convergence (for uniform 

smoothness). 

We gather together some rather elementary remarks about martingales in 

section 3. 

The main theorems are established in sections 4 and 5. The results concerning 

uniform convexity are obtained directly; we prove results concerning uniform 

smoothness by duality. 
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I am grateful to the Department of Mathematics, The Ohio State University, 

for their hospitality; much of this work was done while I was a visitor there. 

2. Terminology and notation 

We use the customary terminology (as employed by Lindberg [2], for 

example) for Orlicz functions and Orlicz spaces. If f and g are continuous 

non-decreasing functions on [0, 2], with f(0) = g(0) = 0, we say that f < g if there 

exists 0 < A  _-< 1 such that Af(Ax)<=g(x) for all x in [0,2], and say that f'~' g if 

f < g  a n d g < f .  

We recall that if (X, II [[) is a Banach space, the modulus of convexity ax is 

defined by 

6x(e) = i n f / 1 - ] I x  + Y[[" ]I x [I = IlY ]l = 1,]Ix - y ]l = e l 
2 " t J 

for 0-<e_-<2. X is uniformly convex if 6 × ( e ) > 0  for e > 0 .  If 6 is an 

Orlicz M-function on [0,2] we say that X is a-uniformly convex if there exists 

k > 0  such that 

[[-~(x + y)ll+ ka(k IIx - y ll)~ 1 

whenever IIx [I-<1 and fly [I --< 1. Thus X is a-uniformly convex if and only if 

ax > a .  If x is a-uniformly convex, where 6 ( e ) =  e p, we say that X is 

p-uniformly convex. 

We recall also that the modulus of smoothness px is defined by 

Ox(r) = sup {l[x + y l[ + ]l X - Y If_ I: }} x II = I, ]] y [I < r} 
2 = ' 

X is uniformly smooth if 0x(~') = o(~') at 0. If P is an Orlicz M-function on [0, oo), 

we say that X is o-uniformly smooth if there exists K > 0 such that 

]1 x + y 11 + I[ x - y ]1 <= 2 + Ko(KII y ]l) 

o 

whenever [[ x tl = 1. Thus X is p-uniformly smooth if and only if 0× < P. If X is 

p-uniformly smooth, where 0 ( r ) =  r", we say that X is p-uniformly smooth. 

We shall require the following two fundamental properties of the modulus of 

convexity (cf. [1, corol. 11, prop. 19 and the remarks on p.138]): 

(i) For each Banach space X there exists a function a on [0,2] such that 
a o a x  and a(e '/2) is convex; 
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(ii) If 1 < p _-< 2, &p~x~ o &, ; 

further the constants of equivalence do not depend upon X. 

As far as martingales are concerned, we shall suppose that Fo _C F~ _C/72 C • • • 

is an increasing sequence of sub-o--fields of a probability space (tq, F, P), with 

Fo = (fl, 0 ) ,  and with F the o--field generated by the sub-o--fields F.. If X is a 

Banach space, we shall say that x = (x.) is an X-valued martingale.if each x. is 

an F.-measurable X-valued Bochner integrable function and if fAX,alP = 
fAx..~dP for each A in Fn and each n; we shall not suppose that xo= 0. We set 

d0= xo, and d. = x. - x._~ for n _-> 1. 

If the sequence (F,)  is generated by a sequence (e,):-~ of symmetric Bernoulli 

random variables, we shall say that x is a Walsh-Paley martingale. In this case, 

we shall write A for 12, and consider h = lira h .  as a projective limit of finite fields 

in the usual way. 

3. Some spaces of martingales 

In this section, we shall suppose that X is a Banach space whose dual X* has 

the Radon-Nikodym property, and that 6 is an Orlicz M-function, satisfying the 

A2-condition, with conjugate Orlicz function p. 

Let M(X)  denote the space of all X-valued martingales (on (~, F, (F,),  P)). If 

x ~ M(X) ,  let D(x) = (d,). D can be considered as a linear map from M into 

the measurable functions on qb, where qb is the disjoint union of the spaces 

({l, F,, P)  (N = 0, 1 , 2 , . . -  ) (or, when ~ = A, the disjoint union of the fields A,). 

Let 

Ms(X) = {x: D(x)@ L~(~, X)} 

= {x: EES(I I d~ II) < o~. 

We give M,(X)  the norm induced by the mapping D and the norm on L~ (qb, X). 

Now suppose that ~p is a continuous linear functional on M~(X). By the 

Hahn-Banach theorem, there exists an element ~b ~ (-L~(ap, X))* = Lp(~,X*) 
such that 

~(x)= ~b(D(x)) f o r x  in M~(X) 

and II ~ It = II ~ II. + is not unique, nor does it necessarily belong to D(Mp(X*)). 
At the cost of losing norm equality, we can rectify this. We need an elementary 

lemma. 

LEMMA 1. Suppose that (f~, F, P) is a probability space and Fo a sub-o'-field of 
lZ. Let H = {f ~ L~(X): E(fIFo ) = 0}. Then if g, and g2 are in Lp(X*), 
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if and only if 

PROOF. Suppose 

E(g,(h)) = E(g2(h) )  forallh inH 

g,  - E (g,  I Fo) = g: - E (g~ I Fo). 

that  E(g,(h))= E(g2(h)) for all h in H. 

f - E f f l  Fo) ~ H, so that 

E(g,f t  - Ef t [F , , ) ) )  = E(g:ft - E f t  ] F,))). 

But 

for  i = 1,2, so that 

E (g, ( E f t  I Fo))) = E (E (g, I Fo)ft)) 

If f E L , ( X ) ,  

Since d* = ~b,, and d'~ = @~ - E(~b~ I F~_,) for  i => 1, it follows that II ~ II < I[ x* lip < 

211 ~ ]]. Conversely  each e lement  of Mp(X*) determines  an e lement  of M~(X)* in 

this way. Thus  we have 

THEOREM 1. There is a natural isomorphism between Mp(X*) and M~(X)*. If 

x* = (x*.) corresponds to the functional ~, II,p II--< II x*L  --< 211,p 11. 

We shall also be concerned  with the space M~(X) of X-va lued  closed 

uniformly bounded  martingales.  If x = (x.) E M~(X) let us deno te  the closure of 

x. by x~. The  map x ~ x ~ is of course a linear isomorphism of Mr(X)  onto  the 

space L~(X)  of essentially uniformly bounded  Bochne r  measurable  functions.  

We give M~(X) the norm II x II~ = 1[ x~ I[~, so that M®(X) is a Banach space. Note  

that if x E M~(X), E(llx~ll ) = sup. E(l lx .  II). 

E ( ( g , -  E(g, 1 Fo) ) f t ) )=  E ( ( g 2 -  E(g21 fo))f t)) .  

Conversely  if h E H, 

E(g~(h )) = E((g, - E ( g ,  I Fo))(h)) 

for  i -- 1,2, so that if g , -  E(g, I Fo) = g2- E(g2l Fo), E(g,(h))= E(g2(h)) for  all 

h i n H .  

Consequent ly  there  exists a unique x * E  Mo(X*) such that 

,p (x) = o ( x * ) ( o ( x ) )  

= d*(do)+ ~ E(d*(d,)). 
i = l  
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4. Uniform convexity and martingale inequalities 

We now turn to martingale inequalities. The first result is a conditional version 

of [4, prop. 2.1]. If x = (x,) is a martingale with increments (d,)  and if p => 1, let 

us set 

mp (d,,) = II d,, II, 

mp(d.) = (E( I I  d. II p IF.  , ) ) "  fo r  n > 1. 

Note that if x is a Walsh-Paley martingale mp(dn)= t1 d, II" 

THEOREM 2. If C > 0 and 1 < p <- 2 there exists a constant kc.p > 0 such that 

kc.p 2 E(6x(kc, pmp(d,))) <- sup[I x. II~ 
i = 0  n 

for any X-valued martingale (x. ) with sup, [Ix, II~= < C. 

PROOF. By the remarks in Section 2, there exist l > 0 and a function j such 

that 

(i) g ( e ) =  j(e "P) is convex, 

(ii) j(e)>= hSx(le), for all 0 <  e _-<2, and 

(iii) 6,,,(×~(e)>_-l](le), for all 0 < e  _-<2. 

Note that ([Ix,, [1")is a submartingale,  so that if A ~ F,, and f,,llx.+,llpdp = 

, ~  > 0 ,  f~ l lx .  II~dP <- f~ l lx .  + ~d.+,llPdP <-- a p. Thus 

In other words, 

A . fA  II xo II" de _<- ~ '  II x.x~ I1~ 

A 'fl (x. + ~d.+,)XA lip 

= II '~(A 'X°XA + ,~ 'x. . ,x~ Ifp 

1 - l j(IA-' II d.+,XA tip)" 

II x. II'dP ~= A plg [lPA Pll d.+,X,, I1~] 

= l C P P A /  A p \ r / C P P ( A ) ) f A  c  lcp  a))gtl  

p .[l__~_PfA m~(d,+ l)dP_ ] 
>= IC P ( A ) s [ C  p P(A)  ]" 

Now fix e > 0  and let 

m~d.~de] 
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Ak = {o2 : (k - 1)e <-_ g [l~C-Pm~(d,.,)(o))] < ke}. 

Then  if P ( A ~ ) > 0 ,  

[ l~ f~m~(fl-"*'~d-P] > (k - 1)e, 
g -C -7 P(Ak)  J =  

so that, adding over  k, we obtain that 

II xo+, 11~ - l i x .  It~ => lC~E  (k - 1)eP(Ak).  
k = l  

On the o ther  hand, 

so that 

fA gilPC-Pm~(d.+,)ld P < keP(Ak) ,  
k 

Israel J. Math. 

]] x. +, [1~ - [I x. I[~ >= ICP (E (g [IPC-Pm ~ (d.+,)]) - e ). 

Since e is arbi trary we get that 

[Ix,*, 11~ -]Ix ,  ]l~ > 12C'E(3x( 12C 'm,(d. . , ) ) ) .  

o 

Further ,  since 6x < e p, 

II x,, I1"~ = Ir d,, I1~ >= k &  (kmp (d,,)), 

for  some suitable k. Adding,  we obtain the required result. 

We now turn to the problem of renorming a Banach space with an equivalent  

,5-uniformly convex norm. 

THEOREM 3. Suppose that (X, II II) is a Banach space and that 8 is an Orlicz 

M-function which satisfies the 2~z-condition. Then the following are equivalent. 

(i) There is an equivalent norm on X under which X is 6-uniformly convex. 

(ii) For each 1 < p <= 2 and each C > 0 there exists a constant K > 0 such that 

2 E(~(mp(d,)))  <= K supll x,, Ilg, 
i=O 

for any X-valued martingale (x.)  with sup. IIx. II~- -< C. 

(iii) For some 1 < p < 2 and some C > 0 there exists a constant K > 0 such that 

E(a( l l  d, fl)) --< K sup II xo llg, 
i = O  

for any X-valued Walsh-Paley martingale (x.)  with sup. I1 x. I1~--< C. 
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(iv) If  (x.) is any closed X-valued Walsh-Paley martingale with sup I/x. II= < 

% then E7=0 E(6(ll d, II)) < ~. 

PROOF. Since 6 satisfies the A2-condition, (i) implies (ii), by Theorem 2. Since 

mp(d~)= {Id, [[ for a Walsh-Paley martingale, (i i)implies (iii), and, using the 

Az-condition again, it is easy to see that (iii) implies (iv). 

Let us now suppose that (iv) holds, and construct an equivalent norm on X 

under which X is 3-uniformly convex. The construction is modelled on that used 

by Pisier [4]. 

Condition (iv) says that, restricting attention to the probability space A, 

M=(X) <-_ Ms(X) .  Since the inclusion has a closed graph, it is continuous. Thus 

there exists 0 > 0  such that if IIx [[~_-< 0, IID(x)ll8 <-_ 1; i.e. ET=oE(8(]]d, ll))<-_ 1. 
Using the A~-condition it follows that there exists K > 0 such that if II x 11=--< 1, 

then E.-oE(6(]l& ]l))_ -< K. Now if 0 <  c~ = [Ix I1~= < 1, 

i=o i=o \ \ ot / /  

so that X?=o E(8(II d, II)) -< K IIx II~. 

Now if x ~ X and ]1 x II = 1, define 

y ( x ) =  inf [2(K + 1)E (ll x~ II)- (K + 1)-' ~ E6 (ll d. II)] 
n = l  

where the infimum is taken over all Walsh-Paley martingales x in M~(X)  with 

ll,, Ilo--< 1 a n d  xo = , .  

If we take x. = x for all n it follows that 

(a) y (x)  < 2(K + 1)llx H. 

If ]1 x II > 1/2(K + 1), E([ I x~ II) > 1/2(K + 1) while £~=, E(6(11 d. [[)) < K, so that 

y (x) >= 2K/2(K + 1) + 2E (ll x~ II) - K / (K  + 1) 

so that 

(b) Y(x)-->211 x II for IIx I1= > 1/2(K + 1). 

Now suppose that y(x)  _-< 1 and y (y )  =< 1. Let z = ~(x + y)  and let ~7 > 0. Then 

there exist Walsh-Paley martingales x and y in M~(X)  with II x I1 -- 1, II y [[~ =< 1, 
xo = x, yo = y such that, setting p. = y. - y._,, 

y ( x ) +  r/=> 2(K + 1)E(llx=lJ)-(K + 1)-' ~ E(6(I/d. II)), 
n = l  
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y(y)+ 71 >= 2(K + 1)E([I Y- I / ) -  (K + 1)-' ~] E(a(llp, liD. 

we now consider the martingale obtained by setting zo = z, 

and 

z . ( e ~ ,  e2,  " " " ) = ( l ~ - E  ) x . - ~ ( g z ,  e3 ,  " " " ) + ( ~ - ~ 2 ) y . - ~ ( e z ,  e3,  " " " ) 

for n=>2. Note that 

and 

so that 

z . (1 ,  ~ ,  e3 , . . "  ) = Xn-l(~2, e 3 , " " "  ), 

Israel J. Math. 

z ° ( -  1, ~2, ~ 3 , . . . )  = y,_,(~: ,  ~ , .  • . )  

z~(1,e2, e 3 , - - - ) =  x4e~,~3,"') 

= : ( ~ , ( x )  + ~ , ( y ) )  + n - y ~/(Z. ) <  1 - -  (K + 1)-18(H x [[/2). 

Since r t is arbitrary we have 

(c) y(x +~2 )<_½(y(x)+ y(y))_(K + 1)_,8(llx _ y l[/2). 

In particular, B = {x" y ( x )  -<_ 1} is an absolutely convex subset of {x : il x II -< I}. 

It follows from (a) that B_D{x: [Ix[l<-_l/2(K+l)} and from. (b) that B _C 

{x: II x II--< 1/2}. Thus the gauge of B, I I B  say, is a norm on X equivalent to the 

original norm. 

Thus 

and 

z 4  - 1, ~2, ~ 3 , ' ' '  ) = y~(e2, ~3 ," ' '  ). 

Consequent ly E (11 z~ 11) = ½(E (ll x~ I[) + E (11Y~ II)) and, setting f .  = z. - z._,, 

E(a ( i l / o  I1))= a( l lx  - y 11/2)+ ~ E(a(II /o  11)) 
n = l  n = 2  

= 8(11 x - y 11/2) + ½ ~ E(8(II d. ]l)) + ½ ~ E ( 8 ( I I  p .  I I ) ) .  
t t = l  t l = l  
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Now suppose that / x ] , = l y l s = l ;  i.e. y ( x ) = y ( y ) = l .  By (a), Jlxll~ 

1/2(K + 1) and IlY I1 --> 1/2(K + 1), and so by (b), IIx I1_- < 1/2 and ItY II --< 1/2; thus 

[1 z II =< 1/2. 
Since 6 satisfies the A2-condition, there exists 0 > 0 such that 6((1 - A)t)_-> 

(1 - OA)6(t) for all t, and 0 < A _--- 1/2. Let e ' = (2(K + 1) 2 + 0K)(1 + K),  and let 

a = e6([Ix - y ]1/2). Since 6(1/2) -< K/2 (this follows easily from the basic prop- 

erty of K),  a -< 1/2. 

Now let w o = w = ( l + a ) z  and let w . = w o + ( 1 - a ) ( z , - z o ) = 2 a z +  

(1 - a ) z ,  for n _-> 1. II w IJ = (1 + a) l lz  II-< 1, so that y ( w )  is defined. Fur ther  

II w=f[~-< 2,~1[ z II+ ( 1 - , ~ ) l l  z=ll=-< 1. 

Also E([[w=ll)-<2a[[zll+(1-~)E(ttz=ll)-<(l+~)E(l[z=f[)and, setting g . =  
w . - w . ,  = (1 - or)/., 

E(,~(]] g,, II))= > ( 1 -  Oa)E(6(IIL II)). 

C o m b i n i n g  these, we see that 

y ( w )  _-< 1 + 7 / -  ( K  + 1)-'6(11 x - y 1[/2) 

+ 2 a ( K  + 1)E([[ z~H) + K ~  1 ,~--1E(6(]lf"H))' 

OaK 
-< 1 + ,~ - (K  + 1)-'~(11 x - y [[/2) + 2o~(K + 1) + K +-----i" 

Since 7/ is arbitrary,  it follows from the definition of a that T(w)-< 1. Thus 

8 
I z Is -< (1 + 4 )  I-< 1 -~6( [ [x  - y 11/2). 

Since [[ [[ is equivalent  to I Is, this shows that (X, [ Is)is 6-uniformly convex. 

5. U n i f o r m  s m o o t h n e s s  a n d  m a r t i n g a l e  inequal i t i e s  

We now use duality to obtain the result for smoothness  corresponding to 

Theorem 3. 

THEOREM 4. Suppose that (X, II r[) is a Banach space and that p is an Orlicz 

M-function which satisfies the A2-condition. Then the following are equivalent: 

(i) There is an equivalent norm on X under which X is p-uniformly smooth. 

(ii) If (x.) is any X-valued Walsh-Paley martingale with Z~-,,Ep([I d, I]) < oc, 

then sup. ~(11 x° t[) < ~.  
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(iii) I[ (x,) is any X-valued Walsh-Paley martingale with Y~o Ep(ll d~ II) < 0% 
then x. converges in L ~(X), and almost surely. 

PROOV. Suppose that (i) holds, and that (x.) is an X-valued Walsh-Paley 
martingale with E?_,,Ep(II d, II)< oo. Since X* is 6-uniformly convex (where 6 is 
the Orlicz function conjugate to p), as in Theorem 3 there exists K => 1 such that 

EE6([Id*[I)  < KsupI[x*l]~ 
n 

for all uniformly bounded X*-valued Walsh-Paley 
sup, [I x .  II® = 1. As 

martingales (x*) with 

sup E(I I x, II) = sup{sup E(x *(x,)): (x *~) E M~(X*): II(x *-)11 < 1} 
n ° 

we have that 

sup Z (ll x° It)--< K sup / sup E (x*(x.)): E (II d*ll) --< 1 / 
n k n ) 

= K sup {sup ~,  Ed*(4):  E E 6  (lid* II)--<l } 

= KIID(x*)II~ < ~c. 

Thus (i) implies (ii). A standard argument shows that (ii) implies (iii). 
Finally suppose that (iii) holds. If x E MP(X) (with respect to A,(A,)), let 

T(x)=l imx, .  T maps Mp(X) into L'(X), and, again by the closed graph 
theorem, T is continuous. The transposed mapping maps (L z(X))* into M~(X*), 
and therefore maps L~(X*)into M~(X*). I f / •  LT(X*), (T*(f)). = E(f  I A, ), so 
that M~(X *) C_ M~(X*). Consequently X* can be renormed to be 6-uniformly 
convex, by Theorem 3, and so (i) holds. 
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